IEEE INFOCOM 2022
Collaborative Learning
ComAI: Enabling Lightweight, Collaborative Intelligence by Retrofitting Vision DNNs
Kasthuri Jayarajah (University of Maryland Baltimore County, USA); Dhanuja Wanniarachchige (Singapore Management University, Singapore); Tarek Abdelzaher (University of Illinois, Urbana Champaign, USA); Archan Misra (Singapore Management University, Singapore)
Dual-track Protocol Reverse Analysis Based on Share Learning
Weiyao Zhang, Xuying Meng and Yujun Zhang (Institute of Computing Technology, Chinese Academy of Sciences, China)
FedFPM: A Unified Federated Analytics Framework for Collaborative Frequent Pattern Mining
Zibo Wang and Yifei Zhu (Shanghai Jiao Tong University, China); Dan Wang (The Hong Kong Polytechnic University, Hong Kong); Zhu Han (University of Houston, USA)
Layer-aware Collaborative Microservice Deployment toward Maximal Edge Throughput
Lin Gu, Zirui Chen and Honghao Xu (Huazhong University of Science and Technology, China); Deze Zeng (China University of Geosciences, China); Bo Li (Hong Kong University of Science and Technology, Hong Kong); Hai Jin (Huazhong University of Science and Technology, China)
Session Chair
Huaiyu Dai (NC State University)
Distributed ML
Addressing Network Bottlenecks with Divide-and-Shuffle Synchronization for Distributed DNN Training
Weiyan Wang (Hong Kong University of Science and Technology, Hong Kong); Cengguang Zhang (Hong Kong University of Science and Technology, China); Liu Yang (Hong Kong University of Science and Technology, Hong Kong); Kai Chen (Hong Kong University of Science and Technology, China); Kun Tan (Huawei, China)
In this paper, we present a novel divide-and-shuffle synchronization (DS-Sync) to realize communication efficiency without sacrificing convergence accuracy for distributed DNN training. At its heart, by taking into account the network bottlenecks, DS-Sync improves communication efficiency by dividing workers into non-overlap groups with different sizes to synchronize independently in a bottleneck-free manner. Meanwhile, it maintains convergence accuracy by iteratively shuffling workers among groups to reach global consensus. We theoretically prove that DS-Sync converges properly in non-convex and smooth conditions like DNN. We further implement DS-Sync and integrate it with PyTorch, and our testbed experiments show that DS-Sync can achieve up to 94% improvements on end-to-end training over existing solutions while maintaining the same accuracy.
Distributed Inference with Deep Learning Models across Heterogeneous Edge Devices
Chenghao Hu and Baochun Li (University of Toronto, Canada)
In this paper, we present EdgeFlow, a new distributed inference mechanism designed for general DAG structured deep learning models. Specifically, EdgeFlow partitions model layers into independent execution units with a new progressive model partitioning algorithm. By producing near-optimal model partitions, our new algorithm seeks to improve the run-time performance of distributed inference as these partitions are distributed across the edge devices. During inference, EdgeFlow orchestrates the intermediate results flowing through these units to fulfill the complicated layer dependencies. We have implemented EdgeFlow based on PyTorch, and evaluated it with state-of-the-art deep learning models in different structures. The results show that EdgeFlow reducing the inference latency by up to 40.2% compared with other approaches, which demonstrates the effectiveness of our design.
Efficient Pipeline Planning for Expedited Distributed DNN Training
Ziyue Luo and Xiaodong Yi (The University of Hong Kong, Hong Kong); Long Guoping (Institute of Computing Technology, Chinese Academy of Sciences, China); Shiqing Fan (Alibaba Group, China); Chuan Wu (The University of Hong Kong, Hong Kong); Jun Yang and Wei Lin (Alibaba Group, China)
Mercury: A Simple Transport Layer Scheduler to Accelerate Distributed DNN Training
Qingyang Duan, Zeqin Wang and Yuedong Xu (Fudan University, China); Shaoteng Liu (Huawei Corp., China); Jun Wu (Fudan University, China)
Session Chair
Ning Wang (Rowan University)
Made with in Toronto · Privacy Policy · INFOCOM 2020 · INFOCOM 2021 · © 2022 Duetone Corp.